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The method of the Riemann boundary-value problem for a denumerable set of contours is used to solve the 

fundamenta1 quasi-periodic problems of the theory of elasticity for a plane with cuts distributed along a 

straight line. The solutions are obtained in explicit form as “ordinary ” “corrected” Cauchy-type integrals 

along a denumerable set of segments of the real axis, and uniformly converging series of simple fractions 

whose coefficients are found from an infinite system of linear algebraic equations. In a number of cases the 

solutions of the system are found explicitly, for example, when the boundary conditions of the problem are 

periodic or decrease near infinity as some power function of degree less than minus one. The system has a 

unique solution in all cases. 

Formulas are obtained for the stress intensity factors and their asymptotic expressions for the cuts 

situated near infinity. Numerical examples are given for the quasi-linear problem of the theory of cracks. 

These problems were first formulated in [l, 21 and studied using the method of discrete Fourier 

transforms. The preference for the method used in the present paper is due to the fact that it does not 
contain such additional transformation as the direct and inverse Fourier transfo~ations. 

THE PERIODIC and certain generalized periodic problems studied by many authors using different 
approaches are special cases of the quasi-periodic problems dealt with in this paper. A detailed 
survey of the literature dealing with these problems is given in [S-s]. 

1. FORMULATION OF THE PROBLEM 

Let a homogeneous, isotropic elastic plane z = x + iy be cut along the line L consisting of the 
segment Lk = [kT--a, kT+a] (k = 0, +l, . . . ; a < 2’12) of the real x axis and on the edges L* of the 
cut L either normal and shear stresses (uY, Tag)' (the first problem) or partial derivatives with 
respect to x of the displacement components (u’, v’)) (the second problem) are specified, or stresses 
are specified on L+ , while derivatives of the displacement components (the mixed problem) are 
given on L-. We shall regard the specified functions as ~-~ntinuous and uniformly bounded on L, 
i.e. the values of these functions will not exceed, in modulo, the same positive constant. In the 
general case the boundary conditions are non-periodic, therefore the stress-strain state realized in 
this case will also be non-periodic. 

In the present case we have the following formulas [6] for the stresses sX, cry, Tag, the rotation w 
and derivatives with respect to x of the displacement components u’, v’ in a plane with a cut along 
the line L: 

0,+0,=4 Re Q, (2)) 2p0=(2+x)Im#fz) 

o,-iz,=tP(z)+SZ(z')+(z-z)Qt' (1.1) 
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where k, x are the elastic constants of the material. The functions a(z), n(z) are holomorphic in 
the plane with a cut along the line L, and at the ends of the cut they may become infinite of order 
less than unity. Since the point 00 is a singular point for these functions, it follows that we must also 
specify how these functions behave near CO. 

We shall consider the stress-strain state determined by the functions Q(z), n(z) which increase in 
modulus, as z-+ ~0, outside any fixed, sufficiently smooth a-neighbourhood U, (L) of the line L, not 
more rapidly than the expression M 1 z I*, M> 0, A < 1. 

2. THE FIRST PROBLEM 

Boundary-value problems 
The functions [6] 

0,. AZ) =cD (2) *Q(z) (2.1) 

represent the solutions of the Riemann boundary-value problems 

co,+(t)+@,-(t)=2g,(t), EZJ (2.2) 

(D*+(t)-u%-(t)=2g2(t), tH4 (2.3) 

2g~,*(t)=(o,-iz,)+*(a,--iz,)- 

for a denumerable set of segments L k, of which the line L consists, in the class of functions which 
increase, outside U(L) as z * ~4, in modulus, not more rapidly than M 1 zIx, A < 1, and may, at the 
ends of the segments, become infinite of order less than unity, i.e. they belong to the class ho [7]. 
The functions g1,2 (t) are H-continuous and uniformly bounded on the line L by definition. 

The general solution of problem (2.3) has the form [S] 

(I), (2) = R + -$ \ gz (t) lit 
i. t (t - 4 

(2.4) 

where B is a complex constant and the integral along L converges absolutely and uniformly in z in 
any bounded domain not containing points of the line L. 

The solution of problem (2.2) 
Since the distribution of the segments Lk is periodic, it follows that we can use the following 

function [8] as the canonical function of class ho of problem (2.2): 

(2.5) 

or 

X, (2) = X (2) sin T (2.6) 

where we shall regard X(z) as a branch holomorphic in the plane with a cut along the line L, 

satisfying the condition 1imXr (z) = 1 as z = iy+ +im. Then X1 (z)-+ 1 as z--+ 00 along the points of 
any fixed set D, consisting of the angles E < 1 argz 1 -CT - E, 0 < E < 7~12. 

Outside any fixed neighbourhood U(L) the above functions will satisfy the inequalities 
0 < ] X(z) ] GM, m d 1 X1 (z) I d A4 where m, M are positive constants. The functions (z - 2)X’(z), 
(z - Z)X,‘(z) are also uniformly bounded outside U(L) and tend to zero as z+ 03 along the points of 
the set D, . The function X1 (z) is T-periodic and X(z) is 2T-periodic. 

Since the function X1(z) becomes zero of the first order at the points kT (k = 0, -Cl, . .), it 
follows that we can write the particular solution of problem (2.2) in the form 



434 v. v. SIL’VESTROV 

F, (4 = x, (2) R (z), R(z) = 9 ’ &(T) 2.-&F 
k=-_m &kT) 3, x,+(z) a-_z d-t5 f2--o 

where the series converges, by virtue of the uniform boundedness of the functions g,(~) and 
(T - k2’)/Xt+(~) on L, absolutely and uniformly outside any fixed neighbourhood U(L). Then the 
function Fs(z) = @t(z) = Fr (z) will be a solution of the homogeneous problem corresponding to 
problem (2.2), and by virtue of the properties of the function X,(z) listed above, the quotient 

Q(z) = Fb(z)K ( ) ‘11 p 1 z WI re resent a meromorphic function with simple poles kT (k = 0, 3-1, . . .) 
which increases in modulus outside U(L), as z+ 03, less rapidly than M ) z IA, A < 1. Therefore [9] 

a 

Q (2) = A + A@ + 
1 1 \ 

z---T k= -0D +w 1 (23) 

k#o 

where the constants Ak are such, that a series in any bounded domain not containing the points kT. 
will converge uniformly. Clearly, this will be true if and only if the following series converges: 

m 

Y 
r& 

Ak (kz + c)-1 (2.9) 

where c is any fixed positive number. Then 

~l(z)~FI(Z)+XI(Z)Q(Z) (2.10) 

Requiring that the displacements be single-valued on going around the cuts L, , we obtain, using 
relations (l.l), (2.1)-(2.3), (2.8) and (2.10), the following system for determining the constants Ak : 

00 

c b-k Ak = WI -f- &+ 1) 1 P,, R = 0, -& 1,, * l I 

k= .-00 

b 

6 s 2x sinxdx 
?a== 2’ - n’n’ 

0 
(sin* b -sin*+ ’ 

b+ 

(2.11) 

(2.12) 

B ?&L=- I J-g (q a P, = -22i g*(t)& 

n s n 

where P, is the principal vector of external forces acting on the edges of the cut L, , and the function 
F,(t) is governed by formula (2.7) in which X,(t) must be replaced by X,*(t). The solution of 
system (2.11) should be sought in the space II of the sequences (Ak} for which series (2.8), (2.9) 
converge and / Q(Z) j GM 1 z Ix, A < 1 for large Z-E U(L). 

Properties of system (2.11) 
Let us write system (2.11) in the form 

OD 

A,, = c %tkAk + c,, n=O,+i,*.. - (2.13) 
k=--ao 

a ,,,, = 0, a,,h. -= - &~‘&_k, n # k; C, = &‘(i& + 2 ;X7-14, Pn,) 

According to (2.12) 6,>0, and the remaining coefficients 6_, = 6,<0. Therefore all 
CY,~ = okn > 0 and 

from which we obtain, after summing the series [lo] 

n,k=O,-I_I,... (2.14) 
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Similarly we can show that for any value of a E (0, T/2) positive numbers c and 8 < 1 exist such that 
OD 

c 
Ia,l,I(n~+c)-~<0(k*+c)-~; k=o,*&...; n&=1,2 (2.15) 

n3-8 

From (2.14) and (2.15) it follows that the infinite matrix ]]cx,~]] defines the compression operator in 
the spaces of bounded sequences I,, of absolutely summable sequences Ii, and also in the Banach 
space II, (m = 1, 2) of the sequences { Ak} for which the following series converges: 

a 

c 
14 I w2 + crrn 

h’-z--m 

From all this it follows [ll] that system (2.13), and hence (2.11), are solvable in the above spaces 
and have unique solutions, which can be found using the method of successive approximations. 
Moreover, the solutions can also be found in the spaces Ii and 1, using the reduction method [12]. 

Since in the case in question the sequence {C, } E I, , therefore the inclusions I, C n C II, imply 
that system (2.11) has a unique solution in the space II which will not be bounded. 

If the inequalities / C,, ) < M 1 n j-1--h, A > 0 hold for large it, which happens, for example, when the 
boundary conditions of the problem as t+ 00 decrease as o(l tl-I-“), then [13] 

a r(t) dt A”=& 1 -- 
(,,~, 6 V) P+’ ’ 

(2.16) 
n=--a, r,=--a 

The numbers A, for large n also satisfy the inequalities I A, I d M I IZ (-‘-“, Vu: 0 < u < min {A; l} 

Behaviour of the solutions for large z 
Following the well-known approach [14] we can show that the function (&(z), for large zE U(L) 

satisfies the inequalities 

]cDz(z)J<Mln]z], I (z-i)&‘(Z) (GZln]z], M>O (2.17) 

and cases exist in which @(.z) increases logarithmically as z+ cc, for example [15], if 
g2(t) = const #O on the segments Lo, L1, . . . , and g2(t) = 0 on the remaining segments. The 
functions Q(z), @i (z) have identical properties. It follows, therefore, that as z+= CQ , the stresses and 
the rotation will, generally speaking, increase logarithmically. Therefore in the general case we 
must not, as in the classical case [6], take the values of the stresses and the rotation as z+ ~0 as the 
conditions for finding the still undetermined constants A, B. 

Instead, we can use as such conditions, for example, the values of the stresses and the rotation at 
any finite point to E L. However, if the functions @j(z), (z- i)Qj’(z) (j = 1,2) tend to some defined 
limits along any curves, e.g. along the arcs, as z+ CQ, we can use the values of the stresses and the 
rotation as z+ 03 along these curves as conditions in determining the constants A, B. Then A, B will 
be obtained from these conditions and from relations (1.1) and (2.1). 

3. THE QUASI-PERIODIC PROBLEM OF THE THEORY OF CRACKS 

The stress intensity factors (SIF) 
According to relations (2.1), (2.4)-(2.8), (2.10) the functions a(z), R(z) have the following form 

[7] near the tipsa+nT(n = 0, fl, . . .): 

~(~)~~(~)~‘/1~,(Z)~(K,-iK2),+/(2)12(z-a-nT)) 

(4 (:R W + 4 + Q W’ + a), (3.1) 

which implies that the numbers (Ki , K2)nt are the SIF in the form given in [3]. Multiplying them by 
V&we obtain the form in [16]. Similarly, near the tip nT- a the SIF are 
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(4 --Kg),- = (;t+ @?(dr--a) + Q(~T -a), (32j 

Since Q(Z) can increase logarithmically as z+ co, it follows that the SIF can also increase as In j n j 
when n--+ co. In the latter case the periodic system of cracks in question will be unstable. 

The behaviour of the stresses near the crack tips is determined in terms of the SIF using the 
well-known representations [3]. 

The case of dec~e~~n~ b~~~d~~ condition 
Let the boundary conditions specified in t-+ ~0 decrease as some function 1 tImmA, h>O. Then the 

solutions {Ak) of system (2.11) will have the same property as k-+ a, and the solutions of problems 
(2.2) and (2.3) will have the form 

@r (2) = J’s (2) + X, (2) Q (1)x 0 (2) = A + 2 AR (Z - kT)-l (3.3) 
it=---a0 

(3.4) 

The functions X1 and Fr are found using the formulas (2.6) and (2.7), and the numbers Ak are 
found from system (2.11) or implicitly from (2.16). In this case the functions @j(z), (z-Z)Qj’(t) 
(j = 1, 2) will b e uniformly bounded outside any fixed neighbourhood U(L) and the functions 
(z - f)@j’(z) will tend to zero as z+ 03 along the rays originating at the origin of coordinates and 
situated in the upper or lower half-plane, while the functions @i(z) and B>,(t) will tend, 
respectively, to A and B. Then from (1.1) and (2.1) we obtain 

(35) 

where cr,“, ormt TV,,“, wio are the values of the stresses and the rotation as z+ 03 along the given 
rays, which should be specified. 

Since in the present case the functions R(nY + a> and Q(nY +a) have the limits 0 and A, 
respectively, as n-+ m , therefore according to relations (3.1) and (3.2) there exists 

lim (K, - iK&,f = (uya - iz:,) 
c 

% 

n-xx 
(3.6) 

The stability of the system of cracks depends, in this case, on the value of the limit (3.6) as well as 
on the values of the SIF near the tips of a certain finite number of cracks [f6,17]. 

Let us consider in greater detail the case when the forces specified at the crack edges decrease, as 
t-+ a, as O(ltj-“), A> 1. Then 

(11, (2) -I R - --& s y& ’ g, (t) dt + L! 
fit 

tg2 (t) t-_z 
L 

Q(z)--A++ 2 A,++ 2 kA, 

z-kT 
I$= -02 k=---nr, 

which yields, for large ZE U(L), 

‘D, (2) - B - & + 0 fZ-V)T Q (2) = A + 4 $ iJ cm (3.7) 

where P is the principal vector of external forces applied to the edges of al1 cracks, and H is the sum 
of all numbers Ak. In this case P# 00. In order to find H we combine a11 equations of (2.1). This 
yields 
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00 

c A$, = - il+ I = F,(t)& S KZ --oD a=--OD L 

From Eqs (2.7) and (2.12) we find I = 0, Sk = IT (k = 0, +l, . . .), therefore 

H=(x-l)Pl[2n(x+l)] 

Since, for large zg U(L), the function F,(z) = O(z-“), it follows that according to the relations 
(2.1), (3.3) and (3.7) we have the following asymptotic relations for large zg U(L): 

x1 (2) 2Q’ (2) = AX,’ (2) + $ (X1’ (2) - ,-) + & 
(3.8) 

+ 0 (2-l-V) 

VY: 1<v<min(h; 2) 

The function X,(z) and constants A, B are found from Eqs (2.6) and (3.5). For large z situated 
along the arc argz = cp, E<~(P] < IT- E, the representations (3.8), by virtue of the equations 
xr (2) M 1, X,‘(z) = o(z-2), will be the same as in the case of a plane with a finite number of cuts [6], 
apart from the function z-l. The nature of the stress distribution for large z Q! U(L) is defined by Eqs 
(1.1) and (3.8). In the present case, for large n the SIF, according to relations (3.1), (3.2) and (3.7), 
have the form 

( 
% 

VG - iK*)nf = $tgy 
11 

a,w-ii’6~v + 
(x-I)P 

2nT(x+ l)n t 
+ 0 WV) (3.9) 

Vv: Z<v<min{h; 2) 

The symmetric case 
Let the normal and shear external forces u(t) and T(t), symmetrical about the coordinate axes, be 

applied to the edges of the crack Lo, i.e. 

while the edges of remaining cracks are stress-free and the stresses and the rotation vanish at 00. 
Then we have in the systems (2.11) and (2.13) P,, = 0, B. = 0, and 

E (r) = [ sina F _ sina F)-” sin F , p (Z) 5 (J (5) - iz (4 

from which it follows thatB_, = -B,, C-, = -C,, (n = 1,2, . . .). 
Let us combine Eq. (2.13) when n = m with the equation when n = -m. This yields the 

homogeneous system 

OD 

A,+&,,= 
c 

(%,,k + a-m, k) (Ak + A-k), m = 1~2,. . l l 

k=l 

which in the space of sequences II, has only a zero solution Ak +A_, = 0, whence A+ = -Ak 
(k = 1,2, . . .>. We also have A0 = B. = Co = 0. Then the solution of the quasi-periodic system will 
be given by the functions 

~(2)=62(Z)=Q)o(z)=‘lzXr(z)(Ro(z)+Qo(Z)) (3.11) 

(3.12) 
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The constants Ak are found from the system 
QD 

z (b-k -&+k) Ak = iB,, n = t,2, . . . (3.13) 
k=l 

In the present case we find that according to relations (3.8) and (3.9) the functions @a(z), an(z) as 
z-+ 03 decrease outside U(L) as O(z-“), and the SIF as n-+ UJ decrease as O(n-“) where 
Vu: 1 <v<2. It is clear that the stresses also have the same property as z-+ CQ. 

The case of similar loads 
Let the edges of the cracks L, be acted upon by loads (a - k),, = p,, (a(t) - k(t)) differing from 

each other only by the constant complex factors p,, which increase, as II-+ CQ, not more rapidly than 
12 ‘, A < 1. Then the solution of the quasi-periodic problem will be given by the functions 

:a 
(3.14) 

and the SIF will be 

(K, - iK,),-L = F. pk (M, - i~,)$-__~ (3.15) 

where @c(z) is the solution of the particular problem formulated above, described by the formulas 
(3.10)-(3.13), (M,) M# are the SIF of the particular problem and the series (3.14) and (3.15) 
converge. 

Example 1. Letp(t) = a(t)-id = a--k= const in the particular problem for the symmetric case. Then 
the solution of this problem will be given by the function Q(z) = a(z) = (a- iT)F(z) and the SIF are 
(Kl),* = uM,,*, (K2)n’ = TM,,‘, where F(z) is the solution and M,,’ is the SIF of the particular problem in the 
case wherep(t) = 1, defined by (3.10)-(3.13) and (3.1), (3.2), (3.12), respectively. 

Table 1 gives, for the period T = n, the values of the factors M,’ as a function of the ratio u/n. In columns 3 
and 4 we give for comparison, the quantities N” = t/tsa which are the SIF of the periodic problem of the 
theory of cracks and K’ = fi which is the SIF for the case of a single crack [-a, u] when a constant unit 
normal load [3] is applied to the edges of the cracks. 

Calculations have shown that for the tips +a, in greatest danger of fracture, we always have Mo’<N”, 
MO’ > Kt’, although in practice the second inequality holds only when (aAn)>O.3. 

Example 2. In the particular problem p(t) = a(r) -iT(t) = (Y-iX)S(t), where s(t) is the Dirac delta 
functions, let concentrated forces X+ iY and -X- iY be applied to the opposite edges of the crack Lc at the 
middle points, respectively. Then @(z) = 0(z) = (Y- iX)F(z) and (Kl),’ = YM,‘, (Kz)~’ = XM,’ where 
F(Z) is the solution and M,’ is the SIF of the particular problem in the case when p(t) = s(t). In the present 
case we have, in formulas (3.10) and (3.12), 

TABLE I 

Tip 

a/n MO’ 

U 

N” K’ 

7T-U 

Ml- 

nfu 27r--a 

Ml + 
M2- 

0.01 0.177 0.177 0.177 0.0 0.0 0.0 
0.05 0.396 0.398 0.396 0.001 0.0 0.0 
0.10 0.561 0.570 0.561 0.003 0.002 0.001 

0.20 0.794 0.852 0.792 0.023 0.016 0.007 
0.30 0.988 1.173 0.971 0.087 0.051 0.029 
0.40 1.225 1.754 1.121 0.296 0.153 0.116 
0.45 1.482 2.513 1.189 0.629 0.314 0.272 
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TABLE 2 

Tip 

ala 

a 

N’ K’ 

7F-a ?r+ll 27r-a 

MI- Ml 
+ 

M2- 

0.01 1.796 1.796 1.796 0.0 0.0 0.0 
0.05 0.803 0.810 0.803 0.002 0.002 0.001 
0.10 0.568 0.587 0.568 0.007 0.005 0.002 
0.15 0.464 0.500 0.464 0.013 0.010 0.004 
0.20 0.404 0.462 0.402 0.023 0.016 0.006 
0.25 0.365 0.450 0.359 0.036 0.023 0.011 
0.30 0.340 0.462 0.329 0.056 0.033 0.019 
0.35 0.327 0.500 0.304 0.086 0.048 0.032 
0.37 0.326 0.527 0.295 0.103 0.056 0.039 
0.40 0.332 0.587 0.284 0.136 0.073 0.055 
0.45 0.382 0.810 0.268 0.242 0.128 0.111 

Table 2 shows, for the period T = IT, the values of the factors M,,‘, N”, K’ as a function of the ratio ala 
where N’ = V%(nV%&) are the SIF of the periodic problem and K’ = l/(~&) are the SIF for the case of 
a single crack where normal concentrated forces of unit magnitude and in opposite directions are applied to the 
opposite edges of the cracks at their middle points [3]. 

Calculations showed that for the tips +a the factors MO’ at O< (U/V) co.37 decrease from m to 0.326, and 
when 0.37 < (ah) < Vi they increase, and we always have MO* <N’, MO’ > K ‘, although in practice the first 
inequality holds only when (ah) > 0.1 and the second when (a/n) > 0.3. 

4. THE SECOND PROBLEM 

In this case [6] to find the functions 

@,,2(z)=x~(z)~dl(z) 

we again have the boundary-value problems (2.2), (2.3)) where we must take 

gl,z(t)=Cc(u’+iv’)+f~(u’+iv’)- 

(4.1) 

The general solution Q(z) of problem (2.3) and particular solution F,(z) of problem (2.2) are 
given, depending on the properties of the functions g~,~(t), by (2.3), (2.7) and (3.4). The general 
solution of problem (2.2) depends on the type of additional conditions which must be specified in 
order to determine the constants included in this solution. 

Let us specify the principal vectors P, (n = 0, 51, . . .) of the external forces acting at the edges of 
the cuts L, , bounded in totality, as these conditions. Then, taking the general solution of problem 
(2.2) in the form (2.10), (2.8) we again obtain, in accordance with Eqs (l.l), (4.1), (2.2), (2.3), the 
system (2.13) for determining the constants Ak , where we must take 

c, =8+-i s Fl(t)dt--+*) 
4 

Therefore, in this case the results of Sets 2 and 3 hold. 
Let the differences s, (n = 0, *l, . . .) of the displacements of the points nT+ T - a and nT + a, 

bounded in totality, be given. We will take the solution of problem (2.2) in the form 

~,(z)=F,(z)f~?(z)V(Z). X,(2)=X(z) cos(nslT) (4.2) 

VW-A-i- 2 A( z_k;_T,2 -T ’ ) 
k=-UJ 

kT + T/2 (4.3) 

The function X(z) is given by formula (2.5), and the numbers Ak are such, that series (4.3) 
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converges and determines the function Q{z) satisfying, for large ZE ~(1,). the inequalirv 
f Q@)/~hf/z/", h< 1. The functjon X&z) satisfies, outside any fixed neighbourhood U(L), th; 
inequalities m< 1X2(z)] GM, M>m >O and tends to -i when y--+-i-~= and to i when y-+--- X. 
Having calculated the differences s, , from (1. l), (4.1)-(4.3), 
determining the constants Ak, where 

we again obtain system (2. I-3) fo;- 

and we must take b = (n/2) - m/T in (2.12). 
It follows, therefore, that in this case all the results of Sets 2 and 3 are also valid except for the 

formuias for determining the constants A, B and the formulas for the SIF. 
Let the boundary conditions of the problem decrease as r-+w, when jr/-‘, A>0 and Iet the 

numbers Sk have the same property as k -+ ~0. Then the function Q(Z) in (4.2) will be given by the 
formula 

Q(z) -f A _t 2 Ah. (z-kT-+)-’ 
k= --DC 

(4.4) 

and will have the limit A as y+ +a, whiIe the function Qiz(z), defined in this case by formula (3.4), 
will have the limit B. The function (a,(z) tends, as y --$ F ~0, to the numbers TiA. Then, according to 
relations (l.l), (4.1), the expression 2x(0; - i~,~) : (x-t 1) will tend, as y+f 03, to the numbers 
B 7iA. The expression 

will aIso tend to the same numbers as y-+ -t m. 
Let G1 and Gz be the values of one of the above expressions as y-+ c ~0 and y--+ - ~0, respectively. 

Then 

A=(i/S) (G,-G,). ~=(‘/~)(G~+G~~ 

Formulas (3.1), (3.2), (3.6), (3.9) and (3.16) hold for the SEF. Here the function Q(z) must be 
determined from (4.3) or (4.4) and then multiplied by -ctg(nalT). 

Notes. 1. The results of Sets 2-4 also remain valid in the case when the boundary conditions of the problems 
on each segment L, belong to the class Ho and increase in modulus as t increases not more rapidly than some 
function of the form It/“, A < 1. In this case the stresses increase as z increases, generally speaking, as I,?/“, 
A < v < 1. The SIF exhibit the same type of growth near the tips of the segments L, as n+ 00. 

2. In the case of periodic boundary conditions the solutions of quasi-periodic problems constructed above are 
identical with the known solutions of the corresponding periodic problems [3, 5, M-211, i.e. in this case the 
stress state bounded at co will necessarily be periodic. We note that in the periodic problems discussed in the 
literature the condition that the stresses are periodic in the elastic domain is specified as the initial condition 
and is not derived from the periodic boundary conditions only. 

3. The validity of (2.16) follows from the results of [22] also in the case when the sequence {C,} Elp : Vp: 
1 <p -=c + 0~. This occurs, for example, when the boundary conditions of the problem decrease near infinity as a 
power function of any negative exponent. This was pointed out to the author by C. Ya. Popov to whom thanks 
are expressed here. 

5. THE MIXED PROBLEM 

The mixed problem consists of determining the functions 161 

~,,,(z~=lf)(z)=tifl(z)/~~ (5-1-l 
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with the boundary conditions 

~m+(t)+(-1)nli,‘xco,-(t)=2g,(t), tC$ m=l, 2 (5.2) 

2g,,z(t)=(o,-iz,)+r2iCL(u’+iu’)-/)’~ 

The conditions for the displacements to be single-valued on passing around the cuts L, in this case 
have the following form according to relations (1 .l), (5.1): 

s 
[Or+(t) + 0*+ (t)] dt = -& s [(Cry - iQ+ + 21.1 (u’ + iv’)-] dt (5.3) 

% %I 

Let the principal vectors P,, of external forces applied to the edges of the cuts L, also be specified, 
Then 

5 
%I 

[q+(t) - (De+ (t)] at = g+- P, $ 

2i 
f- 

SC x+i L 
(a, - ix&+ - - “,” (u’ + iu’3_] dt 

n 

(5.4) 

Adding and subtracting conditions (5.3) and (5.4) we obtain 

s 
cD,+ (t) dt = En1, 

c Q+(t)dt=E,,, n=O,,It_l,... (5.5) 

L% & 

where E,r is the half-sum of the right-hand sides of Eqs (5.3) and (5.4) and En2 is their 
half-difference. 

We will take the solutions of problems (5.2) in the form 

co 

J’m (4 = c L(z) 1 
z-_lcT ni S 

7-w gmb) dz 

kc-m Lk 
x,+(z) T-2 

X,,, (2) = ‘sin 
( 

a-c (2 + a) -r?n sir, rc (z-u) y?n-r . 
T 

) ( ) 

rcz 

T 
Slrn - 

T 

(5.6) 

(5.7) 

where series (5.6) converges absolutely and uniformly in any unbounded region not containing the 
points of the line L, and the constants Amk must be taken so that series (5.7) converges. Then, 
substituting the values of Qm’(t) into conditions (5.5) we obtain, for each specific m = 1, 2, the 
following system for determining the constants A,, Amk: 

0 

W,, + c hw%n,: = En, - 
S 

F,,,+ (t) dt, n =0,+2,.., - 
k-00 %I 

a 

= 
’ X (t)dt 

(1 
6 x(t)& 61, = $ t + nT 9 bk = 1 

X (t) dt 6 

--a -a 
t+(n-k)T +kT’ k#” 

(5.8) 

where X(t) = X,‘(t). Thus the problem of constructing the functions Q),(z) according to 
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conditions (5.2) and (5.5) has been reduced to determining the solutions of system (5.8). which can 

be solved in the same way as system (2.11). 

A similar system is obtained in the case when the differences of the displacements of the points 

n T + T - a and n T + a are specified instead of the numbers P,, . 
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